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EXECUTIVE SUMMARY

Future space exploration and commercialization will require more efficient heat re-

jection systems. In order to accommodate the required heat transfer rates, such systems

must employ advanced heat transfer techniques. Forced two-phase flow boiling heat trans-

fer with enhancements falls in this category. However, moderate to high quality two-phase

systems tend to require higher (compared to single-phase systems) pressure losses. Pre-

vious investigators have studied a variety of two-phase flow (with Freon-ll) regimes in

uniformly-heated (or cooled) flow channels. It has been demonstrated that various degrees

of heat transfer enhancement are possible depending on the: (1) enhancement device used,

(2) predominating flow regime, (3) geometry (e.g., orientation, heat flux distribution), and

(4) specific localized thermophysical processes.

Since many space applications will involve single-side (top- side) heating, it is essential

to extend the literature to assess any enhancement of such heating alone and with other

enhancement techniques. Experiments, using freon-11, were used primarily to examine top-

side heating with and without enhancements. The objective of this work was to expand

the existing freon-ll flow loop capabilities to include both saturated and subcooled flow

boiling experiments. The experiments include: (1) measurements of local (axial) heat

transfer coefficients, (2) evaluation of the effectiveness of combined (e.g., combined helical

fins and twisted tapes) and single heat transfer enhancements, (3) assessment of the effects

on heat transfer of single-side heating, and (4) development of heat transfer data reduction

techniques.

Although most flow boiling experiments documented in the technical literature deal

with uniform heating of the coolant channel walls, actual cold-plate components will always

be heated from one side. In addition, the coolant channels of these components are likely

to have a horizontal orientation. However, the magnitude of the gravitational vector will

be usually small or nonexistant. Although stratification will not occur in actual cold plate

channels due to gravity, some form of stratification may occur due to: (1) circumferential

surface tension gradients, and (2) localized or single-side heat flux.

Thermal systems designers, for the most part, axe using data from uniformly heated

experiments to design components which are subjected to single-side heat fluxes. Under

certain flow conditions such heat flux distributions can significantly affect the heat transfer
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and hence the ability of the component to transport thermal energy. The present work has

increased the heat transfer data for single-side heated channels with enhancement devices.

This final report is divided into two major parts: (1) Part I: Multidimensional Wall

Temperature Measurement and Heat Transfer Enhancement for Top-Heated Horizontal

Channels with Flow Boiling, and (2) Part II: Improved Analytical Heat Transfer Data

Reduction for a Single-Side Heated Coolant Channel.

Part I summarizes over forty experiments which involve both single-phase convection

and flow boiling in a horizontal channel heated externally from the top side. The following

experimental parametric effects were included: (1) inside wall enhancement [smooth, spiral

fins with small pitch, spiral fins with large pitch (LP) combined enhancements which

include LP and a twisted tape], (2) channel inside diameter, (3) inlet subcooling, and

circumferential heat flux distribution [uniform and top-side heating]. Part I also has an

appendix, where the experimental uncertainty analyis was summarized. The resulting

uncertainty in the mean heat transfer coe_cient was +14.6 W/m2K.

Part II contains parametric dimensionless curves with parameters such as the coolant

channel radius ratio, the Blot number, and the circumferential coordinate. These curves

directly relate the measured circumferentially averaged temperature to an equivalent mean

heat transfer coeiTicient. For the case of non-uniform circumferential heat transfer distri-

bution on the outside of the coolant channel, most designers desire to know the equivalent

non-uniform heat flux distribution on the inside of the coolant channel. This inside sur-

face heat flux distribution has been obtained for the case of constant external heat flux on

the top of the coolant channel with the bottom half insulated. The inside wall heat flux

distribution is presented in terms of dimensionless radial temperature gradients.

This report only summarizes many of the activities of the students and the principal

investigator. More details can be found in students individual reports and theses. This

work has supported four (4) graduate students and five (5) undergraduate students. How-

ever, many more students have been exposed indirectly to this project through technical

presentations to student groups and tours of the laboratory. As a result, more students

have considered and/or made plans to pursue a graduate education or improve their aca-

demic performance.

Finally, the continual support of this work by NASA and funded research from

other agencies have assisted in the creation of the Thermal Science Research Cen-

ter (TSRC) at Prairie View A&M University. This Center is interdisciplinary in that

professors from Engineering, Physics, Chemistry, Mathematics, Computer Science and En-

gineering Technology will focus their vast backgrounds on thermal science related research

and design. This includes heat transfer, thermodynamics, thermal control, fluid mechan-

ics, mass transport, thermo-chemical processes, micro-heat transfer, two-phase flows, and

non-intruslve optical diagnostics.
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Two-dimensional (circumferential and axial) wall temperature distributions have been

measured for top-heated coolant channels with different internal geometries wb_ich include

smooth walls, spiral fins, and both twisted tape and spiral fins. b'_eon-ll was the working

fluid. The flow regimes studied include: (1) single phase, (2) subcooled flow boiling, and

(3) stratified flow boiling. The inside diameter of all test sections was near 1.0 cm. Cir-

curaferentially averaged heat transfer coefficients at several axial locations were obt_ned

for selected coolant channels for a mass velocity of 210 kg/rn_s, 0.19 MPa (absolute) exit

pressure, and 20.8"C inlet subcooling. Overall (averaged over the entire channel) heat

trarisfer coefficients were compared for the above channel geometries. This comparison

showed that the channel with large pitch spiral fins had higher heat transfer coefficients

at all power levels. However, the results appear to indicate that if the twist ratio (ratio of

the twisted tape period to the inside diameter) was decreased, the configuration employing
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both fins and a twisted tape would have had greater enhancements.

NOMENCLATURE
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AS

D

Ec

h

hill

hoo

iyg

iaub++_

Ja*

k

Pe

Pp

qe

qn

r

TI

Tj.t

Surface area, m 2

Thermal hydraulic diameter, m

G 2

Eckert number, pp++cp(T..-T..,)

Circumferentially and axially averaged heat transfer coefficient (HTC), W/rn2K

Axially-distributed but circumferentially-averaged HTC, W/m2K

HTC due to natural convection (see Figure 4), W/m2K

Specific latent heat of vaporization, kJ/kg

Enthalpy subcooling of the fluid, kJ/kg

Jakob number, zxi0.b._.
t19

Thermal conductivity, W/InK

Peclet number, Re Pr

Net power generation, W

Heat flux due to natural convection from outside of test section (see Figure 4), W/m 2

Heat flux due to radiation from the outside of the test section, W/m 2

Radial coordinate for the data reduction model (see Figure 4), m

Bulk temperature of the flowing fluid (see Figure 2), °C

Local measured outside wall temperature of the test section (see Figures 3 and 4), *C

Outside wall temperature of the test section = Tm(¢, Z), *C

Saturation temperature (316 K at 0.19 MPa for Freon-ll), *C
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T_

We*

Z

Ambient temperature, *C

Modified Weber number,
Ph v a

Axial coordinate for the heated portion of the test section (see Figure 3), cm

Subscripts

A, B, and C

i

Denotes Domains A, B, or C (see Figure 4)

= 1 through 7 for each axial location (see Figure 3)

Gree]g

¢ Circumferential coordinate; see Figures 2, 3, and 6 ("Phi')

r Half of a full rotation or 180 degrees; in some figures, rr is also referred to as "Pi."

pg Density of gaseous phase of fluid, kg/m 3

pliq Density of liquid phase of fluid, kg/m 3
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Space commercialization will require efficient heat transfer systems. The future suc-

cess of many efforts will be based on our understanding of the behavior of two-phase flow

boiling in both the space (zero-g or reduced-g) and earth environments. This was empha-

sized in the Workshop on Two-Phase Fluid Behavior in a Space Environment, sponsored

by NASA (Swanson, et al., 1989). Flow boiling heat transfer offers an enhancement al-

ternative to forced-primed and capillarity heat management systems. Essential to better

understanding factors affecting flow boiling in heated tubes is the following effects: (1)

non-uniform heat flux distribution, (2) local (axial and circumferential) distributions of

the heat transfer coefficient, (3) resulting pressure drop and pumping power requirements,

(4) single and double enhancement devices, (5) the relative advantages of saturated and

subcooled flow boiling regimes, (6) flow channel aspect ratio effects, (7) the relative effects

of heat transfer enhancement techniques, and (8) correlations for mean and local heat

transfer, and pressure drop. In addition to being applicable to several gravitational levels,

future research efforts must also include basic phenomena such as: (1) orientation (e.g.,

vertical flow and bottom-heated flow channels) and Marangoni effects, (2) other working

fluids such as ammonia, (3) flow stability, (4) binary fluids, and (5) identification of the

threshold inertia (Froude number) beyond which gravity effects would be negligible. For

example, threshold inertia determination is necessary to identify when orientation and/or

Marangoni effects become important. Although it is not apparent, the development of

improved data reduction models is also essential to the accurate representation and inter-

pretation of the heat transfer data.
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This work will assist the development of fundamentally-based heat transfer corre-

lations which include effects of: (1) enhancement device configurations for fluids other

than air (Carnovos, 1977), (2) basic flow parameters which are fluid independent, and (3)

complex heat flux distributions.

This paper examines, experimentally, two-dimensional wall temperature variations for

highly turbulent horizontal channel flows, which are heated from the top. b'_reon-ll was

the working fluid. The temperature measurement were used to obtain axial variations in

the circumferentially averaged heat transfer coefficient (h,,,). The over-all heat transfer

coefficient (h) was determined and compared for four different internal channel enhance-

ment configurations (see Table 1): (1) smooth wall, (2) spiral fins with a small pitch (SP,

6.52 fins per cm), (3) spiral fins with a larger pitch (LP, 4.0 fins per cm), mad (4) doubly

enhanced spiral fins with both large pitch fins and a twisted tape.

m

!

EXPERIMENTAL INVESTIGATION

In this section, brief descriptions are given of the freon-ll flow loop, test section, and

the data reduction procedure.

m

q

w

8



Flow Loop
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The flow loop (see Figure 1) was a closed system, which operates between 0.1 MPa

(Tsa, = 24°C) and 1.3 MPa (T0a, - 124°C). The total power generation was 2.6 kW, and

the maximum mass velocity was 1.0 Mg/m2s. Under special circumstanses, the loop can

be operated at a pressure near 0.04 MPa (Taat = 0°C). The loop has two reservoirs (0.25

rn 3 each). The reservoirs have separate heat exchanger jackets for secondary temperature

control. The flow loop tubing was 2.5 cm (inside diameter) stainless steel. The flow

loop consists of: (1) the freon loop, (2) air lines for pneumatically controlling valves and

pulsation damper, and (3) vacuum lines for system evacuation.

The freon loop was designed to study both staurated and subcooled flow boiling

regimes. After the loop was evaculated, it was filled with freon until the pressure was

slightly above the atmospheric pressure. After the charging process, the fluid was circulated

through the loop at the desired operating conditions. Bled valves were used to purge the

loop and transducers of any gases, and the flow conditions were reestablished. During a

given test, the heater tape power output was adjusted to a given level. The flow rate of the

isothermal bath (50%-50% mixture of ethylene glycol and water) was adjusted until the

test section inlet temperature was at the desired level. A steady-state was then allowed

to occur. After all the desired flow conditions were again verified, the test section's axial

and circumferential wall temperature measurements were recorded along with all the flow

conditions.

Referring to Figure 1, the freon flowed form reservoir 1 through a filter to the main

pump ( positive displacement), which required a net positive suction pressure of at least

9
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0.02 MPa. After leaving the pump, the fluid passed near a pulsation damper, which reduced

the pressure and flow oscillations. When the damper was used, a pneumatically controlled

metering valve was used to stabilized the flow. After exiting the metering valve, the fluid

passed through a turbine flowmeter and then through an unheated flow developing section

(upstream portion of the test section) which had a length greater than 40 times the test

section's diameter. This flow developing section had the same diameter as the heated

portion of the test section. As the fluid flowed through the test section, the inlet and exit

temperatures and pressures were monitored. The downstream portion of the test section

was heated (with a heater tape) on its top half. A downstream valve was used to control

the test section's exit pressure. The fluid then passed through the heat exchanger where

the energy generated in the test section was removed. For these test, the working fluid

bypassed reservoir 2 and the charging pump and then flowed back to reservoir 1.

Test Section

The test section was 223.0 cm long and is shown in Figures 2 and 3. The upstream

unheated portion of the test had smooth walls and the downstream heated portion (121.9

cm long) had either smooth or an enhanced wail configuration (spiral fins and/or a twisted

tape). The entire test section was insulated, and had three main ports (with a forth ex-

tending form the center one), mounted facing downward on either end of the test section.

These ports were used to monitor the inlet and exit fluid pressures, temperatures, and test

section differential pressure. Each test section had twenty-eight (28) Type-K thermocou-

ples mounted on the outside surface of the copper flow channel. Seven thermocouples were

used to make temperature measurements (Tin) at specific axial locations (see Figure 3)

10
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on the wall of the coolant channel. Figure 3 also shows the four circumferential locations

(¢ = 0,_, _, and _r radians) at which wall temperature measurements were made for each

of the seven axial locations. All measurements were made for flow conditions of: (1) 0.19

MPa (absolute) exit pressure, (2) 22.2°C inlet temperature, and (3) a mass velocity of

210 kg/m2s. These wall temperature measurements were used, along with other measured

conditions and the data reduction analysis, to determine the unknown steady-state heat

transfer coefficients (h, and hm).

Data Reduction

W

w

u

u

u

=

w

m

The data reduction approach was based on a heated hydraulic diameter (Boyd and

Turknett, 1989) assumption. Figure 4 shows the model used for this approach. This

model was used to compute a circumferentlally averaged heat transfer coefficient from the

circumferentially averaged wall temperature. This latter temperature was computed from

the four wall temperature measurements made on the outside of the test section at each

of the seven axial locations.

Briefly, this approach involves estimating the inside flow channel's wall temperature

by using an equivalent uniformly heated tube, whose diameter is equal to the ratio of

four times the actual flow channel cross sectional area to the heated perimeter. This was

done using the model in Figure 4, by accounting for the temperature drop across the flow

channel wall, and the heat losses (convection and radiation) from the test section to the

ambient. An iteration scheme was necessary to compute the inside wall temperature. After

accounting for finite heat losses, the circumferentially averaged heat transfer coefficient was

given by

11
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(1)

A = ( _A ) Ba [ln( _P[) + _ kc (_A)(T.. Too),hj ]-

B = B2 + B3 + B4,

m
w

u

=

,ram

B_ = [T._- Tool[m(_c)+ _c t_(_)],kc + (_1
hoo rD

w

m

w

= •

h

U

u

f

and

kC

'kcln _)1 [m(_)+ -B3 - [Tin - ToolL_AA ( - rc ho_ ro
][T_- Too],

B,= Bl[tn(_)+ (_)ln( rB

In the above expression for the circumferentially-averaged heat transfer coefficient

(hm), the magnitude of the bulk temperature, T/, is dependent on To_, which is the

circumferentially-averaged wall temperature at r = rc (see Figures 3 and 4). T/ was

determined based on the magnitude of Ta_ relative to the wall temperature, T_oN _ which

is the temperature required for the onset of nucleate boiling. The bulk fluid temperature

is given by,

T/(z), for T._ < T_oN.;T/ = To_,, T._ >_ TwoNn (2)

12



For a given axial location, the measuredcircumferential valuesof Tm were related to Ta_

by

T._ = Tin(0 = 0) + 3T.,(6 = _) +83Tm(_ = _) + Tin(6 = r) , (3)

w

Finally, the temperature T_on B was computed using the correlation by Frost and Dzakowic

(Collier, 1981),

1.0 = 8.0 StONB Pc We *-1 Ec Ja*. (4)

w

u

w

Using equation (4), the superheat required for the onset of nucleation was 5.9°C (for a

pressure of 0.19 MPa).

In some cases, the heat transfer coefficient was not only averaged circumferentially

but also axially. Although there were seven axial locations at which wall temperature

measurements were made, those measurements near either end of the test section heated

length were influenced by end losses. Hence, the averaged heat transfer coefficient, h, was

obtained using the five central axial locations (Z2, Z3, Z4, Zs, and Z6),

h = h,.,,_ + 2h,_ + 2h,,,. I + 2hm5 + h,n6
S ' (5)

=

=

w

z: :

so that the values of hm_ (where i = 2, 3, 4, 5, and 6) correspond to the various locations

at Zi.

An uncertainty analysis was developed using the above formulae to estimate the un-

certainty, _hm. Using the approach suggested by Moffat (1988, 1990), _hm was found to

be 4-14.6 W/m2K.

u
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RESULTS

For the various internal channel configurations noted above, comparisons were made

of the two-dimensional wall temperature distributions, axial distribution of the mean

(circumferentially-averaged) heat transfer coefficient (hm), and the totally averaged (cir-

cumferentially and axially) or overall heat transfer coefficient (h).

m

L_

m

m

w_

w

Overall Heat Transfer

Figure 5 shows a comparison of the overall heat transfer coefficient for the four in-

ternal configurations. These comparisons show that the spiral fins with the large pitch

resulted in a higher heat transfer coefficient at all power levels. The discontinuities in each

curve are due to either nucleate boiling or severe flow structure change at certain axial

or circumferential locations for a given power level. Since the test section was horizontal

and since the mass velocity level was relatively low (low Froude number), stratification

effects were expected and found to be significant. Stratification conditions reduced the

enhancement effectiveness for all internal configurations. Preliminary estimates indicated

that these reductions could be as high as an order of magnitude relative to vertical flow.

w
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Two- D Wall Temperature Distributions
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Figures 6 (6a-6c) and 7 (7a-7c) show the power generation as a function of measured

outside wall temperature at different circumferential and axial locations for the eases of

large pitch spiral fans without and with a twisted tape, respectively. The three figures in

each of these sets are for three of the four circumferential locations (phi=ff = 0, _, and r;

see Figure 3). As ff varied from 0 to _, the peak wall temperatures for the ease of large

pitch fins with the twisted tape were consistently higher than those for the channel with

only the large pitch spiral fins. This was displayed more dramatically in Figure 8, which

shows the axial distribution of Tw (= Tin) for the four circumferential locations and

constant power. While the wall temperature distributions were essentially identical for

f_ = 3_._ and rr, there were significant differences at ¢ = 0 and _ (compare Figures 8a4'

and 8b). It is apparent from these figures that the addition of a tape increased mixing

and reduced stratification at downstream locations. For the ease without the twisted tape

and for _ = 0, the wall temperature in the upstream portion of the test section between

Z_ (Z=20.32 era) and Z4 (Z=60.98 era) was consistently lower than that with the twisted

tape. However, this trend reversed downstream of Z5 (Z=81.9-8 era). Since the power level

for the large pitch firmed tube in Figure 8a (Pp= 653 W) was greater than that for the

large pitch finned tube with a twisted tape (shown in Figure 8b with Pp= 611.0 W), the

profiles for the former case will be consistently lower than that for the latter ease at the

same power level. With the exception of the differences noted at ff = 0 and _, the two

profiles were similar. Further, for the case with the twisted tape and the large pitch fins

and at ff = _, the wall temperature varied axially in a periodic manner between maxima

15
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of 155"C (upstream) and 90"C (downstream). Since there were only seven axial locations

in which measurements were made, it was not possible to determine the period of this

variation. However, the present measurements indicate that the period was less than 40.0

era. As implied above, the amplitude of the fluctuations decreased as Z increased. These

latter trends were caused by: (1) periodic liquid wetting near ¢ - _ (off center from the

the top of the channel) due to the swirl flow, (2) liquid entrainment into the vapor flow,

and (3) circumferential conduction in the tube.

From Figures 8a and 8b, stratification effects can be seen to have been significant

in that: (1) the wall temperatures at ¢ = 0 remained significantly above the saturation

temperature (T,_, = 43°C), and (2) those wall temperatures at ¢ = _ and _r were

consistently below T,_t. However, the tubes with the large pitch fins (with and without

the twisted tape) reduced stratification much more than the small pitch finned wall tube.

As Z was increased, the stratification decreased more for the former two configurations

than for either the smooth tube or the small pitch fins (compare Figures 8a and 8b with

8c and 8d). Although the power levels for the latter two figures are lower than that of

the former two, a comparison of the axial distribution of the circumferentially-averaged

wall temperatures clearly shows significant reductions in Tw with respect to Z for the large

pitch finned wall. In fact, the large pitch spiral fin with the twisted tape was more effective

than all other cases.

In all tube configurations, the wall temperature, increased (from 22.2°C) with Z near

the entrance (ZI) and later decreased (to near 25.0°C) as Z approached ZT, near the exit

of the test section.
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Circum f erentially Mean, Axially-Distributed Heat Transfer

m

Figures 8a and 8b emphasize the significance of the circumferential temperature vari-

ations in systems with single-side heating. It is apparant that in cases where stratification

is important, the addition of a twisted tape will, at some locations, exacerbate (compare

Figures 8a and 8b, for ¢ = _) the already large wall temperature and small heat transfer

coefficient. However, the data also indicated that the twisted tape will enhance, rather

that inhibit, the heat transfer in some cases. Before this enhancing effect is discussed, the

adverse influence of the twisted tape on the heat transfer coefficient will be discussed.

w

w

u

m

u

B

The detrimental influence on h,n due to the addition of the twisted tape was empha-

sized by considering the circumferential averaged heat transfer coefficients as a function of

the power generation, with Z as a parameter. At each axial location, a sudden rise in h,,

was a manifestation of the inside wall temperature (computed from the measured outside

wall temperature) exceeding the absolute wall superheat required for the for the onset of

nucleate boiling. Relatively speaking, larger values of hm (1,500 to 2,000 W/m2K) were

obtained at both the entrance (Z1) and the exit (ZT) than at intermediate locations. This

is due to: (1) entrance effects, (2) the presence of the single-phase liquid at the bottom

of the tube, (3) axial conduction losses, and (4) the absence of heating from the heater

tape near the exit. Therefore, the data near the test section exit and entrance may not be

representative of the actual behavior. Nevertheless, when the values of hm at the interme-

diate axial locations were compared, one finds that the levels of h,n before and after ONB

were higher for the tube without the twisted tape.

The above trends could possibly be reversed by reconfiguring the twisted tape. The
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twisted tapes's twist ratio (tT, ratio of the axial period to the inside diameter) appears

to be the underlying factor which could improve the enhancement capabilities of the tube

with both fins and a twisted tape. Supporting evidence for this possibility can be observed

by comparing either Figures 6b with 7b or 8a with 8b for ¢ - ¥._ As noted earlier, the

effect of the twisted tape is to raise the local wall temperature at some axial locations and

lower it at other locations. In cases where the wall temperature was lowered, these lower

values (as well as the peak values) decreased with increasing Z. It would appear that if the

period of these temperature fluctuations could be decreased, the lower levels of the wall

temperature would prevail over a large portion of the flow channel. Lower temperatures,

and hence larger hm, would result due to increased mixing between the stratified fluid

layers. This overall trend, of enhanced heat transfer accompanying reduced tT, has been

pointed out in the literature (e.g., see Kirishenko,1980; and Hong and Bergles, 1976) but

has never [to the authors' knowledge] been documented by local measurements on top-

heated tubes. However, to verify that this is also true for stratified flows, the present work

should be extended to include lower values of fT.

w

w

L
w

m

w

The axial distribution of the circumferentially mean heat transfer coefficient (hm) is

shown in Figure 9 for three of the four internal tube configurations. The axial trends for

the smooth wall case in Figure 9c form a basis for the other cases. The trends in the axial

variation of hm(Z) become increasingly irregular as the internal enhancement progresses

from smooth wall tube to the small pitch fins and eventually to the large pitch fins with

the twisted tape. There was a reduction and subsequent increase in hm(Z) as Z increased,

which is similar to observations made by Reid et al. (1987) for the case of uniform heating.

18



Prom Figure 9c, there was a local (axial) peak in hm(Z), which moved downstream as the

power increased. This may be representative of a slug-type flow and may be a unique

con_quence of the top-heated boundary condition. The width of the axial distribution

and the magnitudes of hm(Z) increased with the power. For the smooth wall case, all

curves appeared to approach an asymptote as Z increased. The addition of enhancement

devices disrupted these rather regular trends. The fluctuaions of hm(Z) with increasing Z

still existed but became more irregular and greater in amplitude.

w

m

m

I
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CONCLUSIONS

The present work provides experimental data characterizing the localized thermal

transport in top-heated horizontal coolant channels with enhancement devices. The present

local wall temperature measurements form a basis for future comparisons with both three-

dimensional numerical predictions. Such comparisons will be useful in explaining the

underlying local flow conditions which are favorable to both local and overall heat transfer

enhancement in top-heated configurations. This can be demonstrated in a limited way

by noticing the behavior for h,n for _ = _ in Figures 8a, and 8b. The effect of adding a

twisted tape was to move the peak wall temperature upstream. The present cases should be

expanded to include additional circumferential and axial resolution of the wall temperature

variations, and comparisons at additional levels of mass velocity. The two-dimensional wall

temperature measurements were used to determine the circumferentially-mean but axially-

dependent heat transfer eoei_cient. The flow in the coolant channel was hydrodynamically

developed but thermally developing with regions of: (1) single phase convection, (2) local

subcooled boiling, and (3) a predominating stratification flow over most of the channel's
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length.

The results show that the coolant channel with the large pitch spiral fins had a larger

overall heat transfer coei_cient than smooth tubes, or tubes with either small pitch spiral

fins or a combination of large pitch spiral fins and a twisted tape. However, local measure-

ments indicated that the effectiveness of the latter case will improve for stratified flow as

the period of the twisted tape is reduced. Although similar observations have been made in

the literature for non-stratified flows, the present local measurements not only documents

this effect, but: (1) provides a basis for comparisons with three-dimensional, two-phase,

numerical models, and (2) forms a basis for assessing present and evolving heat transfer

correlations.
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Table 1: Test Section Internal Configurations*.

Tube Type O.D. I.D. No. Fins Fin Height

SpiralFin L.P. 1.27 cm 0.95 cm 16 0.056 cm

SpiralFin L.P./Tape 1.27 cm 0.95 cm 16 0.056 cm

SpiralFin S.P. 1.27 cm 1.13 cm 26 0.056 cm

Smooth Walls 1.27 cm 1.07 cm - -

*Note: L.P., and S.P. denote large and small pitch fins, respectively.

Fin Width Fins/cm

0.30 cm 4

0.3 cm 4

0.30 cm 6
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Figure Captions

Figure 1. Freon-ll Flow Loop for Both Subcooled and Saturated Flow Boiling Experiments.

Figure 2. Cross Section of the Heated Portion of the Test Section.

_ Figure 3. Wall Temperature Measurement Locations.

Figure 4. Control Volume for the Heated Hydraulic Diameter Model.

Figure 5. Comparison of the Overall Heat Transfer Coefficients for Circular Coolant Channels

- With Different Internal Configurations.

Figure 6. Measured Outside Wall Temperature Axial Distribution as a Function of the Net

Power Generation for the Spiral Fin, Large Pitch Internal Geometry at: (a) ¢ = 0,

(b) ¢= '_¥, and (c) ¢ = _r.

Figure 7. Measured Outside Wall Temperature Axial Distribution as a Function of the Net

Power Generation for the Spiral Fin, Large Pitch With a Twisted Tape Internal Ge-

ometry at: (a) ¢ = 0, (b) ¢ = ,r and (c) ¢ =

_ Figure 8. Axial Distribution of the Wall Temperature for the Four Circumferential Locations

for the: (a) Large Pitch Spiral Fins, (b) Large Pitch Spiral Fins With Twisted Tape,

(c) Small Pitch Spiral Fins, and (d) Smooth Tube.

=-- Figure 9 Axial Distribution of the Circumferentially Averaged Heat Transfer Coefficient for:

(a) Large Pitch Spiral Fins With a Twisted Tape, (b) Small Pitch Spiral Fins, and

r

(c) Smooth Wall.
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APPENDIX: Uncertainty Analysis

L--
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w
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This study has resulted in the determination of circumferentially mean and axially

(and circumferentially) mean heat transfer coefficients from measurements of: (1) the test

section outside, local wall temperature (2) the freon-11 flow conditions which include flow

rates, exist pressure, and inlet and exit bulk temperatures, and (3) the ambient tempera-

ture. The relationships between these quantities are summarized in equations (1) through

(5). Following the approach outlined by Moffat [7,8], the uncertainty in the heat transfer

= [( 27 + (

coefficient, h._, is

(A.1)

where Xi represents all independent variables, and Ci represents corrections used to ac-

count for calibration defects, system-senson interactions and system disturbance errors.

The double indicies in eq.(A.1) imply summation over all independent or correction vari-

ables. If effects of Ci are neglected, _h,n is given by,

5hm_[(00--_SA) 2 + (-_5B)2] '/2 (A.2)

--= where A and B are given in equation (1). Since A and B are not actually independent

variables, thier relationship with these variables are as follows:

=

D

6A = Function(Tm,Pp, Too),so that

OA .2 OA 2

5A= [(-_-_p6Pp) +(_-_--_6T,_) + ( O_-_5Too)2]l/2;and
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w

8B = Fundion(Too, Tm,Ti, Pp),so that (A.4)

w

OB 2 OB 2

_B = [(_-p-;6v,)+ (y_-=6Tm)
OB -211/2

+ (O-_EToo)2 + (_-_/8Tf)

From equation (1) the partial derivatives shown in equation (A.3) are given by:

OA = ( kA )( re )[in(rD ) +-k--- _ r_, kc ],
_p B s A c hoorD

(A.5)

m

OA kAkcB1 c3hoo kc

= -rAh_rD OTto rA

= =

OA _ kAkcB1 Ohio + k__&
OToo r A hoo2 r D OToo r A

u

In the above expression, As = 27rDL, where D = 4rA. The partial derivatives involv-

ing B (see equation A.4) can be obtained using equation (1); i.e.

=- S

u

OPp A,kn

OB kc Oh_ T_)_2k__ Oh_- ¢ - (Tin- T_)(_)_ 2 + (T_- ._rv TT-:m
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m

ko ,-o _)tn(_)]+ _tn(_) + (

a---T_ = -_ + ln( ) + h_-rD hearD

J

i

aB -[tn _ + _]
OT] rc hc_rD

= , The local fluid bulk temperature was estimated via the First Law of Thermodynamics,

the measured values of mass velocity, net power generation, inlet temperature, pressure,

and the axial location;i.e.,

m_

u

T l = Function(G, Pp, Ti,,la, P, Z) (A.7)

i

so that,

m

u

where

for Tw < Two,,b;

for T,,, > Two.b; and
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zP_
Ty= Ti.la+ _Lr_GCp

The above partial derevatives are given as,

w

OTI = Z (A.8)
OPp _L_GCp

w

!

OTI Pp
cgZ- LA_Cp' and

g

OTs z P_
OG rLr2AG2Cp

A complete energy balance of the test section was performed. This required appro-

priate definition for h_. The effective external heat transfer coefficiennt, h_, was defined

in terms of the external natural convective heat transfer coefficient (he), and the external

radiative heat transer coefficient (hr) by

m_

u

h_ = hc + hr_hc + a(T_ + Too2)(T0 + T,¢), (A.9)

where a is the Stafan Boltzmann constant and Ta is the outside surface temperature of

the test section. The temperature, T0, is related to Tm by the approximate relationship,
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2=L<Tm- To) 2=L(Tm- Too)= (A._O)
gC x r C *

u

Equation (A.10) can be used along with (A.9) to solve for T, iteratively for each

measured value of Tin. An itenative analysis is necessary because hoo is a nonlinear function

of T, via hr. The natural convective heat transfer coefficient, he, was determined from the

following correlation (for horizontal cylinders)

=

!

hc - kairNUD, where (A.11)
2rD

w

0.559 , _}2
NUD= {0.6+0.38RaD}[1 + (--p-_r)r*] -

where

m

_g(Ts- Too)D"pr
Ra D = v2

m

The partial derivatives of hoo with respect to T and T,n appear in equation (A.6) and

are given by

=_ Ohoo Ohc OT, 2 OTo

o--T-_=cO---T'_ +a[2(T'-+T°°)(T'+T°°)+(T'2+T°°OToo )( 0--_ +1)] (A.12)
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Oh_ Oh_ = OT,

0T,, -" _ + a[3T,= + 2T, T_ + T_ ] _-T- ,

where 0_Ta_Tand or, were obtained from equation (A.10). The resulting expression for
OT,,, OT_

is

i

z=

m where

OT, = t,(',-_) - rDh.' OT, (A.13)
T 2] (Tm-T¢_)

OTto _ + a[3T, 2 + 2T, T_ + .=¢ j rDh_=
t,',(_ c )

m

=

u

1 rD 1

B5= tn- o+

i

Sample calculations indicated that OT is about 1.9 x 10 -_ at higher power levels

(Pp = 657.5W), and should be much smaller (nearly zero) at lower power levels. An

expression similar to equation (A.13) can be obtained for OT from equation (A.10) and

(A.12). Sample calculations have shown that h_ is nearly constant for small changes in

T_. Assuming this to be the case, especially at higher power levels,

--2
I

m

i

m

OT, ln_'_c (A.14)
OTc¢ kcB5

which is slightly less than unity.

One of the last variables for which an uncertainty must be estimated is the net power

generation. Since Ts was near T_ , 6Pp will be strongly dependent on the measured
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electrical current (I) and voltage (V); i.e.,

i

m

OPp 21/2

Here we assume that the uncertainty for the partial derivatives of the power and total

power generation are identical. Noting that Pp)totaz = IV,

6Pp = [V26I 2 + I2_V2] 1/_ (A.16)

B

Sample Calculation

u

m

!

m

Since the primary objective of this work was to obtain heat transfer coefficients for

enhanced and smooth surfaces in the boiling regime, one power level which resulted in

localized boiling has been considered. The above equations are being used to develop a

computer program so that the uncertainty at every power level can be evaluated. An

undergraduate mechanical engineering senior was employed for this purpose.

In particular, selected conditions at a typical high power level was considered for sam-

ple calculations. The test section with large pitch fins for ¢ = 0, Z = Z4, and Pp = 657.45I_ 7

[see reference A-l, p. 232]. In addition to G = 210 kg/m2s, Z4 = 60.96 cm, Tf = 314.8 K,

Too = 295 K, and Tm= 376.87 K.

In the original data reduction used in Part I and [A-l], Ts was assumed to be T_+T_2

and was used in equation (A.9) to compute hr. The heat transfer coefficient, hc, was

assumed to be 4.24 W[m2K for that data reduction. However, the present computa-

tions show that Ts should be 296.5 K [obtained from equation (A.10)], hc should be
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28.6 W/m2K, and boo should be approximately 32.3 W/m_K. This change has a sec-

ondary effect on the uncertainty analysis since _ was small compared to In r.o- which
MOO f¢ rc '

is a controlling parameter in this analysis.

The following is representative of the specific characteristics of the test section dimen-

sions, fluids, and thermophysical properties: rA -- 6.033 x 10 -3 m; rB = 6.35 x 10 -3 m;

rc = 6.98 × 10 -3 m; r D -- 3.2385 × 10 -2 m; D = 4rA; L = 1.219 m; kA = 382.7 W/mK;

kB = 1.038 W/mK; kc = 0.0303 W/mK; koo = 31.3 x 10 -3 W/mK (Air); voo =

0.2945x 10 -6 rn2/s; (Air); fl = 3.3×10 -3 K -1 (Air); Proo = 0.704 (Air); p _, 1,479 kg/m 3

(freon-ll density); C v .._ 0.89 kJ/kgK (freon-11).

To complete the specifications for the sample calculations, the measured uncertainties

of the independent variables must be determined. The uncertainties for n and G were

: 6Z = 0.0016 m, and 6G = 8.4 kg/m2._, respectively. The uncertainties in measuring

all temperatures were assumed equal and will be denoted by 6T. If 6Pp = 0.1 W, _T =

10 -_ K, then 6A -- 762.3 W/m s , 6B = 0.027 K, _ - 9.92 x 10 -3 K -1 _ -OA _ 8B --

-462.6 W/m2K 2. This results in

Sh,_ _ 4-14.6 W/m2K. (A.17)

m

m
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Discussion
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The value of 8hm shown in equation (A.17) is strongly dependent on 5T and _SPp. This

value would be much smaller for lower values of _T and 6Pp, or significantly larger for higher

values of these quantities. In the expression for $B, the quantities which have secondary

0B -1.02 x 10 -3 Those quantities0B = 2.8 x 10 -_ K/W; and _ =influence were:

8B _-1.549. There
aB = 1.534, B = 100.8 K, and _ -with significant influence were:

is great concern in the large magnitude of this last quantity; i.e., aBa"_7" It's magnitude

arises from many influneces associated with the magnitude of T! (the local bulk fluid

temperature). For T! < T, at, _ = 0 and the uncertainty in Tf is $T as noted above.

However when Tf _ Tsar, there is a possibility that ST! may become large. For example,

_ 180.9°C/MPa ,_ °-Tl-- for boiling around the entire channel. If this condition
OPjlt OP

occurred (e.g., with uniform heating) with only a moderate uncertainty in P (i.e., _P =

0.014 MPa), ,ST! could be as high as 2.4 K. However, in most experiments the bulk fluid

temperature remained below the saturation temperature even when there was localized

boiling. Under these circumstances, 6T$ would be slightly greater than 6T, provided

6P < 6.8 x 10 -5 MPa.

The uncertainty, 6hm, is also dependent on the parmeter A, which has an unusually

large magnitude of 4.7 x 106 W/m s for sample case considered. The uncertainty, 6A, is

OA aA = 116.0 W/rn2K are secondary.principally affected by Pp; so, the effects of _ = - a--_--__

Accordingly, _aA = 7, 623 rn -_.
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Experimental Design
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Many improvements for the existing experimental loop have been enumerated in [A-l].

In addition to those, the heat exchanger for controlling the test section inlet temperature

was relocated upstream of the test section. Additional verification runs are planned in

anticipation of additional funding to study the vertical flow geometry which has been

proposed recently [A-2].

In addition to the above discussed uncertainty sensitivity, this uncertainty analysis

suggests some subtle changes in the test section which will reduce the uncertainty in 5hm.

In addition to requiring low 5Tmand kc, if rD/r c was as large as possible, both _A and

would be significantly reduced. This occurs because both of the latter quantities

are inversely proportional to B and B 2, respectively. The quantity, B, would increase

further if T0,t could be selected to be closer to Too. The latter requirement would have a

significant effect on reducing A, and hence _ and _hrn. Another very large contribution

9A
to _h m was due to 5A. The quantity most significantly affecting 5A was F/g'p• This latter

quantity can be significantly reduced by choosing a low thermal conductivity material

for the test section (i.e., kA). For example, if kA is reduced by art order of magnitude,

6A will be reduced similarly (i.e., by and order of magniftude). Any one of these effects

separately will reduce 5hm by a relatively small amount. However, by employing all of

them, significant reductions will occur.
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PART II.
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m

ABSTRACT

m

N

m

A heat transfer model for a single-side, heated, circular coolant channel has been developed

and can be used to determine accurate mean heat transfer coefficients from measured wall

temperatures. In addition, the circumferential heat flux distribution on the inside wall of

the coolant channel was obtained. In previous experiments, seady-state wall temperature

measurements were made at various circumferential locations on the outside surface of the

channel which was heated from one side and insulated on the other side. The channel was

assumed to be cooled internally by a fluid flow field with a bulk temperature, Tb. In the

present work, cases of uniform and nonuniform heat flux were considered for the heated

side. The results were persented for the Biot number varying from 10 -3 to 103, and aspect

ratio (Ro, outside to inside radii) varying from 1.04 to 3.0. Using the formulation, the

circumferentially mean heat transfer coefficient (hm) can be obtained from specified or

measured values of the outside surface temperature T(Ro, _), and Tb. If measurements of

the local fluid film temperature are made available, the present formulation can be used

1 Honeywell Endowed Professor of Engineering

2 Graduate Student

a Research Assistant
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to obtain the circumferential variations of the heat transfer coefficient, h(¢).

Since the results are closed-form analytical expressions, they can be used conveniently

for data reduction or for boundary conditions for numerical analyses of the flow field. In

cases where axial (local) wall temperature measurements are made along the length of the

channel, the present results can be used locally to approximate variations of the mean heat

transfer coefficients in the axial direction.
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NOMENCLATURE

Bi

Bi,,

b.

h

hm

k

rl'_ n

12

q"

qo

r

R

Ro

Integration parameter; see equation (4)

Biot number, hmra/k

(Bi-n)/(Bi+n)

Integration parameter; see equation (4)

Local heat transfer coefficient

Mean circumferential heat transfer coefficient

Wall thermal conductivity

=(-h.,,.?"nk,-?"-l)/(-h,.,.r + kn,-';

Eigenvalue

Cireumferentially varying, outside surface heat flux

Constant heat flux

Radial coordinate

r/r1

Aspect ratio, ro/ra
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r

ro

rl

T

Tb

T*

Greek

e(r,¢)

¢

Radial coordinate

Outside radius

Inside radius

Local wall temperature

Bulk fluid temperature

Dimensionless temperature (referred to as T STAR in plots), 6/(qoro/k)

Average circumferential value of T* (referred to as AVERAGE T STAR in plots)

Temperature excess above the bulk fluid temperature, [T(r,¢)-Tb]

Circumferential coordinate directed counter-clockwise 1

m

u

m

r--

U

U

m

b

1 The origin for ¢ is at: (1) the top of the vertical plane (see Figures 2 and 3) for all

plots, but at (2) the right-side of the horizontal plane for equations (1) through (14).
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INTRODUCTION
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Recently, much attention has been given recently to single-side heated coolant chan-

nels. Most practical applications require forced convective cooling (single-phase or two

phase) and have coolant channels which have drastic circumferential variation in the ap-

plied heat flux. Sometimes, the axial heat flux variations are secondary compared to the

circumferential variations. In cases where this is not true, the present data reduction tech-

nique must be applied at each local axial location. Because of the simplicity involved,

many previous investigators and designers have approximated single side heated coolant

channels with an equivalent uniformly heated channel. Since this approximation may not

apply in all cases, more investigators are now interested in including the effect of single-side

heating in their investigations. With the addition of this needed complexity to many ex-

periments, new and convenient approaches must be identified to reduce heat transfer data.

This need is not restricted to experimental investigators. Many numerical analyst neglect

the effects of the congugate nature of their analysis by approximating heat flux boundary

conditions rather than using the actual boundary conditions which may have been com-

plicated by multidimensional conduction (and/or radiation) in the solid substrate. Within

the scope of the present analytical formulation, the analysis which follows provides a means

for those analyst to include more realistic boundary conditions for their study of the fluid

flow through non-uniformly heated circular channels.

In many engineering designs, various heat transfer enhancement devices (e.g. fins,

twisted tapes, combinations of fins and twisted tapes, etc.) cause very complicated internal

velocity and temperature distributions. Consider a circular coolant channel which is: (1)
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heated from the outside via a nonuniform heat flux, and (2) cooled from the inside by a

complicated convective flow distribution at a bulk fluid temperature, Tb. Such convective

flows are often times too complicated to analyze numerically, especially if the flow is

turbulent and/or involves a phase change. The above described configuration models, in

two-dimensions, nonuniform heat flux configuration found in electronic devices, reactor

components, space cold plates, and many other energy management systems.

For most thermal engineering designs, knowledge of the circumferentially mean heat

transfer coefficient, hm, is essential and knowledge of the local circumferential heat transfer

coefficient, h(¢), and hence the local wall temperature would be desirable. Although

previous models [1-4] have been developed for the case of nonuniform surface heat flux,

they have either not adequately accounted for the nonuniformity of the heat flux or they

were based on laminar flow. Apriori assumptions of such distributions are usually not

appropriate.

The objectives of this work were to: (1) establish a convenient technique for deter-

mining h,,, from measured or set values of the outside channel wall temperature, T(Ro, ¢),

and (2) propose a technique for using the external heat flux distribution to infer the inside

wall heat flux distribution. These set values for T(Ro, ¢) or q" may either be experimental

measurements or critical design constraints.
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PROBLEM SPECIFICATION AND FORMULATION

The model to be studied consists of a nonuniformly heated coolant channel (see Figure

2) which is heated from one side and insulated (perfectly) on the opposite side. The ther-

mophysical properties of the channel material were assumed constant. The mean circum-

ferential heat transfer coefficient, hm, was assumed to adequately describe the convective

heat transfer from the inside surface of the channel to the bulk fluid. Although not used

directly in this formulation, this does allows for the existance of circumferentially varying

heat transfer coefficient, h(¢). This latter coefficient can only be found by determining the

circumferential variation in the "local" fluid film temperature necessary for the definition

of h(¢). The wall temperature is charaterized by the following differential equation:

1 02T 1 cO cOT

-; cO¢----_+ 7_(r_) = O, (1)

However, note that for the formulation, the circumferential coordinate, ¢, is directed

counter-clockwise with its origin (¢ = 0) on the right side of a horizontal plane. The

origin for ¢ will be changed to that shown in Figures 2 and 3 for all plots in Figures 10

through 13. The boundary conditions are

T(r, ¢) = T(r, ¢ + 27r), cOT(v, ¢) = cOT(r, ¢ + 27r) (2a)
cO¢ 0¢

k coT "r
-hm[T(r,¢)- Tb] + -_r [ ,¢)=0, and (2b)

-k coT(r°' ¢)0r = { -q"(¢)'0, 0_r-<<¢¢-<<n;2r, (2c)

After these equations were nondimensionalized and restructured using the standard sepa-

ration of variables technique, the following temperature profile was obtained:

OO

e = 0o+ _(r-- - m.r")(a.co_¢ + b._i_¢), a_a (3)
n=]

6O
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1

Oo = Ao['-_z + lnR],

where n=1,2,3,4,5 ..... , which reflects all boundary conditions having been applied except

the last. The first term, 60, would have described the radial temperature profile for the case

of a completely uniform heat flux around the circumference of the flow channel. The second

term is therefore the required correction due to the nonuniform heat flux. Application of

the last boundary condition results in expressions for the constants an and bn in terms of

the nonuniform heat flux distribution; i.e.,

(,.7"-1 + m.,-o )a,, = _ jo

l f2'_q"(¢)(sin)n¢dC, and(,.:.-1 + m.,._-l)_. = _.1o (4)

kAo 1 f2,,
r-: - 2",_Jo q"(¢)d¢

=
m

m

u
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q_Case I: (¢) = qo

The case of q'(¢) having a constant magnitude of qo on one side of the channel and a

zero heat flux on the remaining side is applicable to electronic cooling, space cold plates,

and is an approximation for reactor component heat loading and many other applications.

For the latter application, a sinusoidal heat flux distribution, which will be covered in Case

II (below), is more applicable ot fusion reactor components. For the case of a uniform heat

flux on one side of a channel, the dimensionless temperature distribution is:

T'(R, ¢) - 0(r, ¢) 1 1 oo 2sinn¢ R n [1 - BinR -2"]
__z = 2[-_z + InR] + _ rn-------5- R'2 [1 + Bi,Ro2n] ' (5)

rt-_ l

where an=O, Ao = _, and bn -- _n,_k, n=1,3,5,7 .... It is instructive to examine the

validity of this equation with respect to the limits of the Blot number, Bi. For R=I,

1 _°° 4sinn¢
T*(1, ¢) (6)

+ _ 7rnR2[(Bi + n) + (Bi- n)Ro2n]"

As Bi approaches infinity, the convective transport mode predominates. In that case, both

terms in equation (6) approach zero and this implies that T(r, ¢) approaches Tb. In a

similar fashion, T(ro, ¢) approaches a temperature above Tb as Bi approaches infinity.

The radial temperature gradient is given by

OT*(R,¢ ) 1 _-_2sinnCR"-l[(Bi+n)+(Bi-n)R -2"]
OR = -_ + "--" -_n R2 [(Bi + n) + (Bi - n)Ro 2"] (7)

The temperature gradients at R=I are especially important since they represent the ef-

fective circumferential heat flux at the inside wall of the coolant channel. Therefore, for

R=I,

OT* 1 _ 4sinn¢ Bi

OR = 2 + 2-, _rnR o [(Bi + n) + (Bi- n)Ro 2n]
n-----]
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For Bi=O, the lowest achieveable dimensionless temperature gradient at the boundaries

occurs under the conditions of very high channel thermal conductivity or very low heat

transfer coefficient. Therefore, 8T is given by

1 1 oo 2sinn

p - _ forR RoandanyBi;or" [2+ E.:, .. ], =
= i_'+_.oo ,B,.,.._ fo, R = 1 and :o, B, = 0; (S)

z..,n=l nnR,g[(B_+n)+(Bi-n)RZ2"] ' for R = 1 and any Bi.

The first equation in equation (8) should satisfy equation (2c).

Two additional relationships will be of interest: (1) the average circumferential di-

mensionless temperature excess, T*v(R), and (2) the ratio of the inside wall temperature

to the outside wall temperature. T*_ is defined as

T2*_(R) = _ T*(R,¢)d¢, or (9)

1 1 lnR] (10)
T_ _(R ) = 2 [ -ff iz +

Therefore, if TAV is measured experimentally the mean heat transfer coefficient, hm can

be obtained from equation (10). In cases where measurements of T(Ro, ¢) are made, it

may be important to relate this measurement directly to T(1, ¢). In this instance, it will

be important to know the ratio of the inside to outside channel wall temperatures. These

quantities are related to the ratio of T*(1, ¢)/T*(Ro, ¢). It is very important to note that

this ratio is completely independent of the magnitude of qo" and is only implicitly related

to the thermal conductivity of the channel, hm, and the geometry via the Blot number;

1.e.l

1 4sinncp

T*(1, ¢) _ 2B-'-7+ _,_=a ,_nR:t(Bi+,,)+(ai-,,)n-; _"1 (11)

a lnRo] E_O=l 2sinn¢_ [(Bi+n)-(Bi-n)R; 'hIT'(tL, ¢) _[_ + + _ t(B,+.)+(s,-.)no-,-j

As will be displayed shortly, the above equations can be used to either: (1) obtain the

temperature distribution for given values of qo, hm, k, geometry, etc., or (2) obtain the
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mean circumferential heat transfer coefficient, hm, from measurements of the outside wall

temperature for given values of qo, k, and the geometry.
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Case II: q"(¢)=qosin(¢)

There are many applications where the flow channel is irradiated from one side by a

heat source, and shielded on the other side. Equations (3) and (4), which apply equally

to this case, reduce to the following alter equation (2c) is applied by allowing for q" (¢) =

qosin¢,

I I I_a (R-"Bin- R") [{(-I) "-1- I} {(-1) "+1- I}T*(R,¢) = 7{[-_7+lnR]+_ = 2_,_--R-_) n---_l + n_l ]cosn¢

i

_ R-' - R{_} , . .,
-_t Z 2n-5_-_ J_'.._,

o _ Ot(Bi+l) J

(12a)

i

OT* R 1 1 1 _ (R-"-IBi. + R "-a) 1
"-_-('¢) = g{R + 2n=2 (R'g"Bi,--_o) [(n- 1)

tBi-1

-Ttk--_ ¥ n l _'-,

-- + n-_]eosn¢

(12b)
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Formulation Verification

The heat tranafer coefficient hm can be defined as,

m

u

I. OTf 1 ¢) (13a)
hm -- [T(1,¢)- Tb]' or

1.0= ¢) (13b)
T'(1,¢) '

which reduces to,

1 jr. ET=l 4Bisinn_b-_ ,,_n_ [(B,+n)+(B_-n)n: _"]] = (14)
1 + E7=I 4Bisinn_
2 rrnRr_[(Bi+n)+(Bi-n)R_ 2"]

This equation represents one of the boundary conditions. All computations must exactly

satisfy this equation for all values of Bi, Ro, and ¢. This is just one of many ways the

computed results were verified.
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RESULTS*

The results are presented in a dimensionless form involving parametric variations of

the averaged wall temperature, wall temperature distributions, and the radial tempera-

ture gradient at the inside surface of the coolant channel. This gradient is most important

because it is directly related to the local (circumferential) heat flux. For cases involv-

ing a non-uniform external heat flux distribution, most designers are quite interested in

the corresponding non-uniform heat flux distribution at the inside boundary. This heat

flux is equal to -k OT(rt'¢) A closed-form solution for the temperature gradient in this
cgr "

* See the nomenclature list to note the differences in the origin for ¢ for the

formulation equations and the plots, which are contained in this section.
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latter equation has been given above, and corresponding circumferential distributions are

presented below as functions of Bi and Ro for the case of q_ = qo.

Parametric Temperature Distribution

Closed-form two-dimensional analytical temperature distributions have been obtained

for two cases involving single-sided heat flux distribution. In both cases the heat flux was

applied on one side; i.e., half of the perimeter of the circular coolant channel was heated

while the remaining half was insulated. In one case the heat flux distribution was constant

(see equation (5)); and in the other, a sinusoidal heat flux distribution was used with the

maximum heat flux occurring on the plane of symmetry (see equation (12) and Figure 2).

In the latter case, a zero heat flux existed from ¢ = _ to ¢ = -_. This analytical approach

is an improvement over the previous data reduction technique, which employed the heated

hydraulic diameter model used in Part I.

The improved technique for determining the circumferentially mean heat transfer co-

efficient, h,n, is based on equation (10). This simple equation relates the circumferentially

averaged temperature at any R to Bi, and hence hm. In the experiments described in Part

I, local temperature measurements were made at R = Ro, and the averaged temperature

was computed from these measurements. Figure 10 shows the dimensionless, averaged

temperature as a function of both Bi and Ro. For the experiments in Part I, Bi was less

than 3.0 × 10 -s and Ro was near 1.1. From Figure 10, this indicates that measured values

of T_*_ above 0.5 give good resolution for corresponding values of Bi (or hm).

The local variations of the coolant channel wall temperature are presented in Figures

11 (¢ = 0 and _r) and 12. Figures lla-c (¢ = 0; center of the heated side) appear to show
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that there are negligible variations of T* for a_ R and Bi. However, closer inspection is

provided by Figures lld-f, where it is shown that at all values of Ro < 1.04 and B_ < 0.01,

there are negligible variations of T* with respect to R. Figures llg-1 show similar results for

¢ = _r (center of the insulated side). The circumferential variation of T* is shown in Figure

12 in terms of the ratio of T'(R - 1, ¢)/T*(R - Ro, ¢) for Ro - 3.0. The maximum value

of this ratio is 1.0, which is approached when: (1) Bi becomes small (i.e. < 0.005), and

(2) as Ro approaches 1.0. The minimum value of this ratio always occur at ¢ -- 0 (Heated

side). This corresponds with T(Ro, ¢) being a maximum and T(1, ¢) being a minimum.

The maximum value of the ratio occurs at ¢ = rr, which is on the line of symmetry of the

insulated portion of the channel.
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Inside Wall Heat Flux Distribution

The heat flux distribution at the inside wall of the coolant channel is proportional

to the local radial temperature gradient at R=I.0. Figures 13a-c show that there are

no substantial heat flux variations on the inside wall when: (1) Bi < 10 -s for Ro =

1.04, (2) Bi < 10 -_ for Ro = 1.34, and (3) Bi < 5.0 x 10 -2 for Ro = 3.0. Notice

that this Bi limit increases with Ro. Hence for Bi greater than the above limits, the

circumferential variation of the inside wall heat flux becomes progressively larger as Bi

increases.

Because the analytical results are in form of infinite series, the convergence of the

series requires more and more terms: (1) as Ro approach 1.0, and (2) as Bi becomes larger

(e.g., greater than 0.2 for Ro=l.04, and greater than 10.0 for Ro=1.34). Let e be defined as

the difference in the infinite series of equation (8) which is computed by using "n'-terms in
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one case and "n+l" terms in the other. When • = 10 -3, poor convergence resulted for the

above noted intervals of Bi. The results in Figures 13a-c required • = 10 -7 for acceptable

convergence. A number of approaches were used to check and verify the results. As noted

above, convergence was assumed when all boundary conditions were computed within a

minimal error, the boundary condition shown in equation (2b).

CONCLUSIONS

m

m

i

tm

m

m

An improved technique has been developed for obtaining circumferentially mean heat

transfer coefficients from measured wall temperature data for circular coolant channels

which are heated extermally from one side and insulated externally on the other. Although

two cases for the outside heat flux distribution were considered (constant and sinusoidal)

a parametric analysis was presented for the cases of constant heat flux. For both cases,

closed-formed analytical solutions were obtained.

Detail results were presented'for the case of constant outside heat flux. The technique

has good resolution for Bi < 0.5 and should result in minimal error in the heat transfer

cefficient for a dimensionless temperature, T*, greater than 0.5 for Ro < 1.5. Quantitative

profiles were computed for the effective inside heat flux circumferential distribution, which

aT'(1,¢) Significant circumferential heat flux variations occurred atis proportional to aR •

higher Bi as Ro increased. For example, significant variations occurred for: (1) Ro = 1.04,

when Bi > 10-3; (2) .Ro = 1.34, when Bi > 10-2; and (3) Ro = 3.0, when Bi > 5.0x 10 -2.

68



= =
i

= =

i

u

n

E-

l

ACKNOWLEDGMENTS

The PI would like to acknowledge Dr. Joseph Atkinson, John Thornborrow and

NASA(JSC and Headquaters) for their assistance and for supporting this work under con-

tract NAG 9-310. In addition, the PI is grateful to: Dana Brooks (undergraduate), Byran

Curtis (undergraduate), and Fred Smith (undergraduate) for their assistance and their

willingness to consider research and a graduate education. Finally, a special thanks goes

to Mrs. Margie Lewis and Ms Wei Cui whose help in typing segments of this manuscript

came at a critical time. time. Above all, I would like to acknowledge the friendship of all

the above students and assistants listed in Parts I and II, and the co-authors of Parts I

and II.

u

m
u

m

i

REFERENCES

1. Hasan, M.Z., "Effects of Nonuniform Surface Heat Flux and Uniform Volumetric

Heating on Blanket Design for Fusion Reactors", Fusion TechnoIogy,Vol 16, 1989,

pp. 44-52.

2. Boyd, R.D. and Turknett, J.C., "Forced Convection and Flow Boiling With and With-

out Enhancement Devices for Top-Side-Heated Horizontal Channels", Space Science

and Engineering Research Forum Proceedings, Alabama A&M University, Nomal,

Alabama, 1989 (March), pp. 363-370.

3. Reynolds, W.C., J. Heat Trans. ASME, Vol 82(2), 1960, pp. 108-112.

4. Reynolds, W.C., Int J. Heat and Mass Transfer, 6, 1963, pp. 445-454.

69

i



N

Figure Captions
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Figure 10. Circumferentially Averaged Temperature, at R = Ro Versus the Biot

Number, Bi.

Figure 11. Local Dimensionless Temperature Versus R With Bi as a Parameter for:

(a) Ro=l.04, and ¢=0 (center of the heated side); (b) R,=1.34, and

¢=0; (c) Ro=3.0, and ¢=0; (d) Ro=l.04, ¢=0, and reduced range for T*;

(e) Ro=1.34, ¢=0, and reduced range for T*; i f) Ro=3.0, ¢=0,

and reduced range for T*; (g) Ro-l.04, ¢--7r (center of the insulated side);

(h) Ro=1.34, and ¢=7r; (i) Ro=3.0, and ¢=rr; (j) Ro=l.04, C-r,

and reduced range for T*; (k) Ro= 1.34, ¢=r, and reduced range for T*;

and (1) Ro=3.0, ¢=rr, and reduced range for T*.
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Figure 12. Circumferential Variation of the Ratio of the Inside to Outside Wall

Temperatures as a Function of Bi for Ro=3.0.

Figure 13. Circumferential Variation of the Local Dimensionless Radial

Temperature Gradient as a Function of Bi for: (a) Ro=l.04, (b) Ro=1.34,

and (c) Ro=3.0.
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